Information-theoretic Analysis of the Gibbs Algorithm: An Individual Sample Approach

Youheng Zhu¹ Yuheng Bu² ¹Huazhong University of Science and Technology ²University of Florida

> ITW 2024 Wednesday 27 November, 2024

Contents

1 Introduction

- 2 Non-asymptotic gap
- **3** Illustrative Example

Learning-theoretic setups:

 \Box *W* is the hypothesis, $w \in \mathcal{W} \Rightarrow$ the set of all candidate models.

Learning Algorithm as a Channel:

Learning-theoretic setups:

- \Box *W* is the hypothesis, $w \in \mathcal{W} \Rightarrow$ the set of all candidate models.
- \Box $S = \{Z_i\}_{i=1}^n$ is the training data drawn from the distribution $\mu^{\otimes n}$

Learning Algorithm as a Channel:

Learning-theoretic setups:

- \Box *W* is the hypothesis, $w \in \mathcal{W} \Rightarrow$ the set of all candidate models.
- \Box $S = \{Z_i\}_{i=1}^n$ is the training data drawn from the distribution $\mu^{\otimes n}$
- \Box Loss function $\ell:\mathcal{Z}\times\mathcal{W}\to\mathbb{R}^+$

Learning Algorithm as a Channel:

Learning-theoretic setups:

- \Box *W* is the hypothesis, $w \in W \Rightarrow$ the set of all candidate models.
- \Box $S = \{Z_i\}_{i=1}^n$ is the training data drawn from the distribution $\mu^{\otimes n}$
- \Box Loss function $\ell:\mathcal{Z}\times\mathcal{W}\rightarrow\mathbb{R}^+$

Learning Algorithm as a Channel:

 $\hfill\square\hfill P_{W|S}$ stochastically picks hypothesis given training data

$$S \rightarrow P_{W|S} \rightarrow W$$

Learning-theoretic setups:

- \square *W* is the hypothesis, $w \in \mathcal{W} \Rightarrow$ the set of all candidate models.
- \Box $S = \{Z_i\}_{i=1}^n$ is the training data drawn from the distribution $\mu^{\otimes n}$
- \Box Loss function $\ell:\mathcal{Z}\times\mathcal{W}\rightarrow\mathbb{R}^+$

Learning Algorithm as a Channel:

 $\hfill\square$ $P_{W|S}$ stochastically picks hypothesis given training data

$$S \rightarrow P_{W|S} \rightarrow W$$

 $\hfill\square$ Randomness \rightarrow SGD, initialization.....

Generalization Error:

□ Empirical risk:

$$L_e(W,S) = \frac{1}{n} \sum_{i=1}^n \ell(W,Z_i)$$

Generalization Error:

□ Empirical risk:

$$L_e(W,S) = \frac{1}{n} \sum_{i=1}^n \ell(W,Z_i)$$

□ Population risk:

$$L_{\mu}(W) = \mathbb{E}_{\mu}[\ell(W, Z)] = \mathbb{E}_{\mu^{\otimes n}}[L_{e}(W, S)]$$

Generalization Error:

□ Empirical risk:

$$L_e(W,S) = \frac{1}{n} \sum_{i=1}^n \ell(W,Z_i)$$

Population risk:

$$L_{\mu}(W) = \mathbb{E}_{\mu}[\ell(W, Z)] = \mathbb{E}_{\mu^{\otimes n}}[L_{e}(W, S)]$$

Generalization Error": Difference between empirical risk and population risk

Generalization Error:

□ Empirical risk:

$$L_e(W,S) = \frac{1}{n} \sum_{i=1}^n \ell(W,Z_i)$$

Population risk:

$$L_{\mu}(W) = \mathbb{E}_{\mu}[\ell(W, Z)] = \mathbb{E}_{\mu^{\otimes n}}[L_{e}(W, S)]$$

□ **"Generalization Error":** Difference between empirical risk and population risk □ $gen(P_{W|S}, P_S) = \mathbb{E}_{P_{W,S}}[L_{\mu}(W) - L_e(W, S)]$

Generalization Error:

□ Empirical risk:

$$L_e(W,S) = \frac{1}{n} \sum_{i=1}^n \ell(W,Z_i)$$

Population risk:

$$L_{\mu}(W) = \mathbb{E}_{\mu}[\ell(W, Z)] = \mathbb{E}_{\mu^{\otimes n}}[L_{e}(W, S)]$$

Generalization Error": Difference between empirical risk and population risk
 gen(P_{W|S}, P_S) = E<sub>P_{W,S}[L_µ(W) − L_e(W, S)]
 Explanation: "Expected[Population risk - Empirical Risk]"
</sub>

Gibbs Algorithm

□ Definition:

$$\mathcal{P}_{W|S}^{[n]}(w|s) riangleq rac{\pi(w)e^{-\gamma L_e(w,s)}}{V_{L_e}(s,\gamma)}.$$

Why Gibbs Algorithm?

Gibbs Algorithm

□ Definition:

$$\mathcal{P}_{W|S}^{[n]}(w|s) riangleq rac{\pi(w)e^{-\gamma L_e(w,s)}}{V_{L_e}(s,\gamma)}.$$

Why Gibbs Algorithm?

□ Information-risk minimization (IRM)

$$P^*_{\mathcal{W}|S} = \operatorname*{arg\,min}_{P_{\mathcal{W}|S}} \left(\mathbb{E}[L_e(\mathcal{W}, S)] + \frac{1}{eta} I(\mathcal{W}; S) \right)$$

Gibbs Algorithm

□ Definition:

$$\mathcal{P}_{W|S}^{[n]}(w|s) riangleq rac{\pi(w)e^{-\gamma L_e(w,s)}}{V_{L_e}(s,\gamma)}.$$

Why Gibbs Algorithm?

□ Information-risk minimization (IRM)

$$P^*_{\mathcal{W}|S} = \operatorname*{arg\,min}_{P_{\mathcal{W}|S}} \left(\mathbb{E}[L_e(\mathcal{W}, S)] + \frac{1}{\beta} I(\mathcal{W}; S) \right)$$

□ Stochastic gradient Langevin dynamics (SGLD) 's limit behavior

Gibbs Algorithm

□ Definition:

$$\mathcal{P}_{W|S}^{[n]}(w|s) riangleq rac{\pi(w)e^{-\gamma L_e(w,s)}}{V_{L_e}(s,\gamma)}.$$

Why Gibbs Algorithm?

□ Information-risk minimization (IRM)

$$P^*_{\mathcal{W}|S} = \operatorname*{arg\,min}_{P_{\mathcal{W}|S}} \left(\mathbb{E}[L_e(\mathcal{W}, S)] + \frac{1}{\beta} I(\mathcal{W}; S) \right)$$

Stochastic gradient Langevin dynamics (SGLD) 's limit behavior
 ...

□ Information-theoretic generalization error bound [Aolin Xu and Maxim Raginsky 2017]; [Gholamali Aminian et al. 2021]

$$|\text{gen}(P_{W|S}, P_S)| \lesssim \sqrt{\frac{I(W; S)}{n}}$$
 Arbitrary algorithm
 $\text{gen}(P_{W|S}, P_S) = \frac{I_{SKL}(W; S)}{\gamma}$ Gibbs algorithm

 $I_{SKL}(X; Y) \triangleq D_{KL}(P_{X,Y} || P_X \otimes P_Y) + D_{KL}(P_X \otimes P_Y || P_{X,Y}) = I(X; Y) + L(X; Y)$

□ Information-theoretic generalization error bound [Aolin Xu and Maxim Raginsky 2017]; [Gholamali Aminian et al. 2021]

$$|\text{gen}(P_{W|S}, P_S)| \lesssim \sqrt{rac{I(W; S)}{n}}$$
 Arbitrary algorithm
 $ext{gen}(P_{W|S}, P_S) = rac{I_{SKL}(W; S)}{\gamma}$ Gibbs algorithm

 $I_{SKL}(X; Y) \triangleq D_{KL}(P_{X,Y} || P_X \otimes P_Y) + D_{KL}(P_X \otimes P_Y || P_{X,Y}) = I(X; Y) + L(X; Y)$ $\Box \text{ Trade-Off: Empirical risk vs Generalization}$

□ Information-theoretic generalization error bound [Aolin Xu and Maxim Raginsky 2017]; [Gholamali Aminian et al. 2021]

$$|\text{gen}(P_{W|S}, P_S)| \lesssim \sqrt{rac{I(W; S)}{n}}$$
 Arbitrary algorithm
 $ext{gen}(P_{W|S}, P_S) = rac{I_{SKL}(W; S)}{\gamma}$ Gibbs algorithm

 $I_{SKL}(X; Y) \triangleq D_{KL}(P_{X,Y} || P_X \otimes P_Y) + D_{KL}(P_X \otimes P_Y || P_{X,Y}) = I(X; Y) + L(X; Y)$

- □ Trade-Off: Empirical risk vs Generalization
- □ Simple Intuition: Overfitting training data $\uparrow \Rightarrow$ Empirical risk $\downarrow \Rightarrow$ Information from training data $\uparrow \Rightarrow$ Generalization Error \uparrow

6/24

I(W; S) vs $I(W; Z_i)$

Entire dataset to Individual sample [Yuheng Bu, Shaofeng Zou, and Venugopal V Veeravalli 2020]

$$|\operatorname{gen}(P_{W|S}, P_S)| \lesssim \sqrt{\frac{I(W; S)}{n}} \quad \Rightarrow \quad |\operatorname{gen}(P_{W|S}, P_S)| \lesssim \frac{1}{n} \sum_{i=1}^n \sqrt{I(W; Z_i)}$$
$$\operatorname{gen}(P_{W|S}, P_S) = \frac{I_{SKL}(W; S)}{\gamma} \quad \Rightarrow \quad ?$$

Our Contribution:

□ Asymptotic equivalence between $I_{SKL}(W; S)$ and $I_{SKL}(W; Z_i)$

$$gen(P_{W|S}, P_S) = \frac{I_{SKL}(W; S)}{\gamma} \quad \Rightarrow \quad gen(P_{W|S}, P_S) \sim \frac{1}{\gamma} \cdot \sum_{i=1}^n I_{SKL}(W; Z_i)$$

- □ Rate and exact convergence speed of information: $I_{SKL}(W; S) \sim \sum_{i=1}^{n} I_{SKL}(W; Z_i) = \Theta(1/n)$
- □ Asymptotic equivalence between I(W; S) and $L(W; S) \Rightarrow$ a tighter generalization error bound.
- □ Illustrative Example: Mean Estimation

24

Non-asymptotic gap

Theorem

For joint distribution $P_{W,S}$ induced by the Gibbs algorithm, we have

$$\sum_{i=1}^{n} I_{\text{SKL}}(W; Z_i) - I_{\text{SKL}}(W; S) = \sum_{i=1}^{n} \left(\mathbb{E}_{P_{W, Z_i}}[J_i^{[n]}(W, Z_i)] - \mathbb{E}_{P_{W} \otimes P_{Z_i}}[J_i^{[n]}(W, Z_i)] \right),$$

where the Jensen gap $J_i^{[n]}(w, z_i)$ is defined as

$$\begin{split} \int_{i}^{[n]}(w,z_{i}) &\triangleq \log \int_{\mathcal{Z}^{n-1}} P_{W|S}^{[n]}(w|z_{i},z^{-i}) d\mu^{n-1}(z^{-i}) \\ &- \int_{\mathcal{Z}^{n-1}} \log \left(P_{W|S}^{[n]}(w|z_{i},z^{-i}) \right) d\mu^{n-1}(z^{-i}) \end{split}$$

with $z^{-i} \triangleq \{z_1, \cdots, z_{i-1}, z_{i+1}, \cdots, z_n\}.$

Non-asymptotic gap

Remark

□ Jensen gap $\int_{i}^{[n]}(w, z_i)$ always non-negative.

Remark

- □ Jensen gap $\int_{i}^{[n]}(w, z_i)$ always non-negative.
- □ However, $\mathbb{E}_{P_{W,Z_i}}[J_i^{[n]}(W, Z_i)] \mathbb{E}_{P_W \otimes P_{Z_i}}[J_i^{[n]}(W, Z_i)]$ can be either negative or positive.

Remark

- □ Jensen gap $J_i^{[n]}(w, z_i)$ always non-negative.
- □ However, $\mathbb{E}_{P_{W,Z_i}}[J_i^{[n]}(W, Z_i)] \mathbb{E}_{P_W \otimes P_{Z_i}}[J_i^{[n]}(W, Z_i)]$ can be either negative or positive.
- □ The lack of Chaining rule \Rightarrow $I_{SKL}(W; S)$ can be either larger or smaller than $\sum_{i=1}^{n} I_{SKL}(W; Z_i)$.

An example is provided in [Gholamali Aminian et al. 2021], Example 1.

Remark

- □ Jensen gap $J_i^{[n]}(w, z_i)$ always non-negative.
- □ However, $\mathbb{E}_{P_{W,Z_i}}[J_i^{[n]}(W, Z_i)] \mathbb{E}_{P_W \otimes P_{Z_i}}[J_i^{[n]}(W, Z_i)]$ can be either negative or positive.
- □ The lack of Chaining rule \Rightarrow $I_{SKL}(W; S)$ can be either larger or smaller than $\sum_{i=1}^{n} I_{SKL}(W; Z_i)$.

An example is provided in [Gholamali Aminian et al. 2021], Example 1.

□ Characterizing the gap is difficult, turn to asymptotic as $n \to \infty$.

Limiting behavior of measure:

Lemma

 \Box $n \rightarrow \infty$, W and S tends to being independent:

$$\lim_{n\to\infty}\left(\frac{dP_{W,Z^n}^{[n]}}{dP_W^\infty\otimes P_{Z^\infty}}\right)=1 \quad a.s.$$

Key: The Strong Law of Large Numbers: $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} \ell(W, Z_i) = L_{\mu}(W)$ a.s.

Asymptotic analysis

Limiting behavior of measure:

Lemma

 \Box $n \rightarrow \infty$, W and S tends to being independent:

$$\lim_{n o \infty} \left(rac{d \mathcal{P}^{[n]}_{W,Z^n}}{d \mathcal{P}^\infty_W \otimes \mathcal{P}_{Z^\infty}}
ight) = 1$$
 a.s.

 \Box $n \rightarrow \infty$, W and Z_i tends to being independent:

$$\liminf_{n\to\infty}\left(\frac{dP_{W,Z_i}^{[n]}}{dP_W^\infty\otimes P_{Z^\infty}}\right)=1 \quad a.s.$$

Key: The Strong Law of Large Numbers: $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} \ell(W, Z_i) = L_{\mu}(W)$ a.s.

Y. Zhu (HUST), Y. Bu (UF)

By exchanging limit and integral:

Theorem

If the loss function $\ell(w, z)$ is bounded, we have

$$I_{\rm SKL}(W; Z_i) \sim \frac{1}{n^2} \gamma^2 \mathbb{E}_{\mu} \bigg[\mathbb{E}_W^{\infty} \big[(\ell(W, Z) - L_{\mu}(W))^2 \big] - \mathbb{E}_W^{\infty} \big[(\ell(W, Z) - L_{\mu}(W)) \big]^2 \bigg].$$

In other words: $I_{SKL}(W; Z_i) = \Theta(1/n^2)$. The exact speed is given by the blue part.

Note that the
$$\mathbb{E}_{\mu}\left[\mathbb{E}_{W}^{\infty}\left[(\ell(W, Z) - L_{\mu}(W))^{2}\right] - \mathbb{E}_{W}^{\infty}\left[(\ell(W, Z) - L_{\mu}(W))\right]^{2}\right]$$
 is also associated with γ . So the speed isn't simply γ^{2} .

The gap:
$$|I_{SKL}(W; S) - \sum_{i=1}^{n} I_{SKL}(W; Z_i)|$$
.

Theorem

For Gibbs algorithm with bounded loss function,

$$\left|I_{\mathrm{SKL}}(W;S)-\sum_{i=1}^{n}I_{\mathrm{SKL}}(W;Z_{i})\right|=o(1/n).$$

□ Note that $I_{SKL}(W; Z_i) = \Theta(1/n^2)$, therefore the gap is order-wise negligible.

Sketch of Proof:

□ Recall the non-asymptotic result

$$\sum_{i=1}^{n} I_{\text{SKL}}(W; Z_i) - I_{\text{SKL}}(W; S) = \sum_{i=1}^{n} \left(\mathbb{E}_{P_{W, Z_i}}[J_i^{[n]}(W, Z_i)] - \mathbb{E}_{P_{W} \otimes P_{Z_i}}[J_i^{[n]}(W, Z_i)] \right)$$

Asymptotic analysis

Sketch of Proof:

□ Recall the non-asymptotic result

$$\sum_{i=1}^{n} I_{\text{SKL}}(W; Z_i) - I_{\text{SKL}}(W; S) = \sum_{i=1}^{n} \left(\mathbb{E}_{P_{W, Z_i}}[J_i^{[n]}(W, Z_i)] - \mathbb{E}_{P_W \otimes P_{Z_i}}[J_i^{[n]}(W, Z_i)] \right)$$

lemma: \mathbf{z}_i in $J_i^{[n]}(w, \mathbf{z}_i)$ is order-wise neglectable, so

$$\lim_{n \to \infty} n \cdot J_i^{[n]}(w, \mathbf{z}_i) = \lim_{n \to \infty} n \cdot \hat{\mathcal{I}}_i^{[n]}(w) = \mathcal{K}_0(w).$$

$$\lim_{n \to \infty} n \cdot \left(\sum_{i=1}^{n} I_{SKL}(W; Z_i) - I_{SKL}(W; S) \right)$$

$$= \lim_{n \to \infty} \int_{W, Z^{\infty}} n \cdot J_i^{[n]}(w, z_i) \cdot n \cdot \left(1 - \frac{dP_W^{[n]} \otimes P_{Z_i}}{dP_{W, Z_i}^{[n]}} \right) \left(\frac{dP_{W, Z_i}^{[n]}}{dP_W^{\infty} \otimes P_{Z^{\infty}}} \right) dP_W^{\infty} \otimes P_{Z^{\infty}}$$

$$= \int_{W, Z_i} K_0(w) \left(- \left(\gamma(\ell(w, z_i) - L_{\mu}(w)) \right) + \mathbb{E}_W^{\infty} [\gamma(\ell(W, z_i) - L_{\mu}(W))] \right) \cdot 1 \cdot dP_W^{\infty} \otimes P_{Z_i}$$

$$|\mathsf{F}| = 0.$$

$$|\mathsf{TW}| 2024$$

Y. Zhu (HUST), Y. Bu (UF)

Asymptotic analysis

Sketch of Proof:

□ Recall the non-asymptotic result

$$\sum_{i=1}^{n} I_{\text{SKL}}(W; Z_i) - I_{\text{SKL}}(W; S) = \sum_{i=1}^{n} \left(\mathbb{E}_{P_{W, Z_i}}[J_i^{[n]}(W, Z_i)] - \mathbb{E}_{P_W \otimes P_{Z_i}}[J_i^{[n]}(W, Z_i)] \right)$$

lemma: \mathbf{z}_i in $J_i^{[n]}(w, \mathbf{z}_i)$ is order-wise neglectable, so

$$\lim_{n \to \infty} n \cdot J_i^{[n]}(w, \mathbf{z}_i) = \lim_{n \to \infty} n \cdot \hat{\mathcal{I}}_i^{[n]}(w) = \mathcal{K}_0(w).$$

$$\lim_{n \to \infty} n \cdot \left(\sum_{i=1}^{n} I_{SKL}(W; Z_i) - I_{SKL}(W; S) \right)$$

$$= \lim_{n \to \infty} \int_{W, Z^{\infty}} n \cdot J_i^{[n]}(w, z_i) \cdot n \cdot \left(1 - \frac{dP_W^{[n]} \otimes P_{Z_i}}{dP_{W, Z_i}^{[n]}} \right) \left(\frac{dP_{W, Z_i}^{[n]}}{dP_W^{\infty} \otimes P_{Z^{\infty}}} \right) dP_W^{\infty} \otimes P_{Z^{\infty}}$$

$$= \int_{W, Z_i} K_0(w) \left(- \left(\gamma(\ell(w, z_i) - L_{\mu}(w)) \right) + \mathbb{E}_W^{\infty} [\gamma(\ell(W, z_i) - L_{\mu}(W))] \right) \cdot 1 \cdot dP_W^{\infty} \otimes P_{Z_i}$$

$$|\mathsf{F}| = 0.$$

$$|\mathsf{TW}| 2024$$

Y. Zhu (HUST), Y. Bu (UF)

```
How do I(W; S) and L(W; S) scale respectively?
```

```
Existing result for Gaussian channel: L(W; S) > I(W; S) for Gaussian channel P_{W|S}.
```

```
How do I(W; S) and L(W; S) scale respectively?
```

```
Existing result for Gaussian channel: L(W; S) > I(W; S) for Gaussian channel P_{W|S}.
```

How do I(W; S) and L(W; S) scale respectively?

Existing result for Gaussian channel: L(W; S) > I(W; S) for Gaussian channel $P_{W|S}$.

Theorem

Mutual Information and Lautum Information are asymptotically equivalent.

$$I(W;S) \sim L(W;S) \sim \frac{1}{2}I_{SKL}(W;S)$$

Comparison to Algorithm Stability

□ Results from algorithm stability [Maxim Raginsky et al. 2016]

 $\ell(w, z) \in [0, 1], \quad |\operatorname{gen}(P_{W|S}^{[n]}, P_S)| \leq \frac{\gamma}{2n}$

Comparison to Algorithm Stability

□ Results from algorithm stability [Maxim Raginsky et al. 2016]

 $\ell(w, z) \in [0, 1], \quad |\operatorname{gen}(P_{W|S}^{[n]}, P_S)| \leq \frac{\gamma}{2n}$

□ Coin-tossing example: $w \in \{0, 1\}$ and $z \in \{0, 1\}$, $\ell(w, z) = \mathbb{1}_{w=z}$ is a zero-one loss, and $\pi(w)$ is uniform over $\{0, 1\}$.

Our previous result shows that:

$$ext{gen}(P_{W|S}^{[n]},P_S) \sim rac{\gamma}{4n}$$

Comparison to Algorithm Stability

□ Results from algorithm stability [Maxim Raginsky et al. 2016]

 $\ell(w, z) \in [0, 1], \quad |\operatorname{gen}(P_{W|S}^{[n]}, P_S)| \leq \frac{\gamma}{2n}$

□ Coin-tossing example: $w \in \{0, 1\}$ and $z \in \{0, 1\}$, $\ell(w, z) = \mathbb{1}_{w=z}$ is a zero-one loss, and $\pi(w)$ is uniform over $\{0, 1\}$.

Our previous result shows that:

$$ext{gen}(P_{W|S}^{[n]}, P_S) \sim rac{\gamma}{4n}$$

 \Box As a development of the previous theorem ($I(W; S) \sim L(W; S)$), we show that

Comparison to Algorithm Stability

□ Results from algorithm stability [Maxim Raginsky et al. 2016]

 $\ell(w, z) \in [0, 1], \quad |\operatorname{gen}(P_{W|S}^{[n]}, P_S)| \leq \frac{\gamma}{2n}$

□ Coin-tossing example: $w \in \{0, 1\}$ and $z \in \{0, 1\}$, $\ell(w, z) = \mathbb{1}_{w=z}$ is a zero-one loss, and $\pi(w)$ is uniform over $\{0, 1\}$.

Our previous result shows that:

$$ext{gen}(P_{W|S}^{[n]},P_S) \sim rac{\gamma}{4n}$$

 \Box As a development of the previous theorem ($I(W; S) \sim L(W; S)$), we show that

Theorem

For $\ell(w, z) \in [0, 1]$, $\forall \delta > 0$, there exist an $N \in \mathbb{N}^+$ such that $\forall n > N$,

$$0 \leq \operatorname{gen}(P_{W|S}^{[n]}, P_S) \leq \frac{\gamma}{(4-\delta)n}$$

Y. Zhu (HUST), Y. Bu (UF)

We consider the problem of learning the means of the distribution $\mu.$ For simplicity, consider 1-dimensional case.

$$\Box$$
 $S = \{Z_i\}_{i=1}^n, Z_i \sim \mu = \mathcal{N}(0, (\frac{1}{\sqrt{2\beta}})^2), \text{ i.i.d.}$

Then, for a Gibbs algorithm with inverse temperature γ :

We consider the problem of learning the means of the distribution μ . For simplicity, consider 1-dimensional case.

$$\Box \ S = \{Z_i\}_{i=1}^n, \ Z_i \sim \mu = \mathcal{N}(0, (\frac{1}{\sqrt{2\beta}})^2), \ \text{i.i.d.}$$

□ Square error $\ell(w, Z) \triangleq ||w - Z||_2^2 = (w - Z)^2$. Unbounded!

Then, for a Gibbs algorithm with inverse temperature γ :

We consider the problem of learning the means of the distribution $\mu.$ For simplicity, consider 1-dimensional case.

Then, for a Gibbs algorithm with inverse temperature γ :

We consider the problem of learning the means of the distribution $\mu.$ For simplicity, consider 1-dimensional case.

Then, for a Gibbs algorithm with inverse temperature γ :

$$\Box \ \gamma \text{gen}(P_{W|S}, \mu) = I_{\text{SKL}}(W; S) = \frac{\gamma^2}{n\beta(1+\gamma)}$$

We consider the problem of learning the means of the distribution $\mu.$ For simplicity, consider 1-dimensional case.

□
$$S = \{Z_i\}_{i=1}^n$$
, $Z_i \sim \mu = \mathcal{N}(0, (\frac{1}{\sqrt{2\beta}})^2)$, i.i.d.
□ Square error $\ell(w, Z) \triangleq ||w - Z||_2^2 = (w - Z)^2$. Unbounded
□ Prior distribution $\pi(w) = \frac{1}{\sqrt{\pi}} \exp(-w^2)$.

Then, for a Gibbs algorithm with inverse temperature $\gamma {:}$

$$\Box \ \gamma \text{gen}(P_{W|S}, \mu) = I_{\text{SKL}}(W; S) = \frac{\gamma^2}{n\beta(1+\gamma)}$$

$$\Box I_{\rm SKL}(W; Z_i) = \frac{\gamma^2}{n^2 \beta (1+\gamma) + \gamma^2 (n-1)}$$

We consider the problem of learning the means of the distribution μ . For simplicity, consider 1-dimensional case.

Then, for a Gibbs algorithm with inverse temperature γ :

$$\Box \ \gamma \operatorname{gen}(P_{W|S}, \mu) = I_{\mathrm{SKL}}(W; S) = \frac{\gamma^2}{n\beta(1+\gamma)}$$

$$\Box I_{\rm SKL}(W; Z_i) = \frac{\gamma^2}{n^2 \beta (1+\gamma) + \gamma^2 (n-1)}$$

 $\Box \sum_{i=1}^{n} I_{\text{SKL}}(W; Z_i) - I_{\text{SKL}}(W; S) = \Theta(1/n^2) = o(1/n)$

We consider the problem of learning the means of the distribution $\mu.$ For simplicity, consider 1-dimensional case.

Then, for a Gibbs algorithm with inverse temperature γ :

$$\Box \ \gamma \operatorname{gen}(P_{W|S}, \mu) = I_{\operatorname{SKL}}(W; S) = \frac{\gamma^2}{n\beta(1+\gamma)}$$

$$\Box \ I_{\operatorname{SKL}}(W; Z_i) = \frac{\gamma^2}{n^2\beta(1+\gamma)+\gamma^2(n-1)}$$

$$\Box \ \sum_{i=1}^n I_{\operatorname{SKL}}(W; Z_i) - I_{\operatorname{SKL}}(W; S) = \Theta(1/n^2) = o(1/n)$$

$$\Box \ I(W; S) = \frac{1}{2} \log \left(1 + \frac{\gamma^2}{n^2(1+\gamma)\beta+(n-1)\gamma^2}\right) \sim \frac{1}{2} I_{SKL}(W; S)$$

Y. Zhu (HUST), Y. Bu (UF)

Summary

Conclusion

- □ Asymptotic equivalence between $I_{SKL}(W; S)$ and $I_{SKL}(W; Z_i)$
- □ Rate and exact convergence speed of information: $I_{SKL}(W; S) \sim \sum_{i=1}^{n} I_{SKL}(W; Z_i) = \Theta(1/n)$
- □ Asymptotic equivalence between I(W; S) and $L(W; S) \Rightarrow$ a tighter generalization error bound.
- □ Example: Mean Estimation

Future Works

Conjecture: The results hold for not only bounded loss function, but for loss function with a light tail distribution (e.g. *σ*-subgaussian)

 \Box The relation between sample size *n* and inverse temperature γ .

Reference

- [Ami+21] Gholamali Aminian et al. "An exact characterization of the generalization error for the Gibbs algorithm". In: Proc. Advances in Neural Information Processing Systems (NeurIPS) 34 (2021), pp. 8106–8118.
- [BZV20] Yuheng Bu, Shaofeng Zou, and Venugopal V Veeravalli. "Tightening mutual information-based bounds on generalization error". In: IEEE Journal on Selected Areas in Information Theory 1.1 (2020), pp. 121–130.
- [Rag+16] Maxim Raginsky et al. "Information-theoretic analysis of stability and bias of learning algorithms". In: 2016 IEEE Information Theory Workshop (ITW). IEEE. 2016, pp. 26–30.
- [XR17] Aolin Xu and Maxim Raginsky. "Information-theoretic analysis of generalization capability of learning algorithms". In: Advances in neural information processing systems 30 (2017).
- [Zou+24] Xinying Zou et al. "The Worst-Case Data-Generating Probability Measure in Statistical Learning". In: IEEE Journal on Selected Areas in Information Theory 5 (2024), pp. 175–189.

Y. Zhu (HUST), Y. Bu (UF)

Thanks for listening.

WCDG Distribution [Xinying Zou et al. 2024]: \square WCDG distribution $P_{\hat{S}|\Theta=\theta}^{(P_0,\beta)}$ is defined as:

$$\frac{d P_{\hat{\mathsf{S}}|\Theta=\theta}^{(P_0,\beta)}}{d P_0} = \exp\left(\frac{1}{\beta}\ell(\theta,s) - \log\int \exp\left(\frac{1}{\beta}\ell(\theta,s)\right) d P_0(s)\right)$$

WCDG Distribution [Xinying Zou et al. 2024]:

□ WCDG distribution $P_{\hat{S}|\Theta=\theta}^{(P_0,\beta)}$ is defined as:

$$\frac{dP_{\hat{\mathsf{S}}|\Theta=\theta}^{(P_0,\beta)}}{dP_0} = \exp\left(\frac{1}{\beta}\ell(\theta,s) - \log\int \exp\left(\frac{1}{\beta}\ell(\theta,s)\right)dP_0(s)\right)$$

 \Box Represents worst-case distribution maximizing expected loss, given a reference P_0

WCDG Distribution [Xinying Zou et al. 2024]:

□ WCDG distribution $P_{\hat{S}|\Theta=\theta}^{(P_0,\beta)}$ is defined as:

$$\frac{d P_{\hat{S}|\Theta=\theta}^{(P_0,\beta)}}{d P_0} = \exp\left(\frac{1}{\beta}\ell(\theta,s) - \log\int \exp\left(\frac{1}{\beta}\ell(\theta,s)\right) d P_0(s)\right)$$

Represents worst-case distribution maximizing expected loss, given a reference P₀
 Connected to optimization problem:

$$\max_{P\ll P_0}\int \ell(\theta,s)dP(s) \quad \text{s.t.} \quad D(P\|P_0)\leq \alpha$$

Worst-case Data Generation (WCDG):

□ Assign $\theta = w, z_i, s = z^{-i}$, and define:

$$\ell(\theta, s) = L_e(w, z_i, z^{-i}) - \frac{1}{\gamma} \log V_{L_e}(z_i, z^{-i}, \gamma)$$

Worst-case Data Generation (WCDG):

□ Assign $\theta = w, z_i, s = z^{-i}$, and define:

$$\ell(\theta, s) = L_e(w, z_i, z^{-i}) - \frac{1}{\gamma} \log V_{L_e}(z_i, z^{-i}, \gamma)$$

 $\hfill\square$ Leads to upper bound for generalization error:

$$\sum_{i=1}^{n} \left(I_{\text{SKL}}(W; Z_i) + D(P_W \otimes P_S \| P_{\hat{Z}^{n-1}, Z_i, W}^{(\mu^{n-1}, \frac{1}{\gamma})}) \right)$$
$$\geq I_{\text{SKL}}(W; S) = \gamma \text{gen}(P_{WIS}^{\gamma}, P_S)$$

Asymptotic analysis

Sketch of Proof: By the Strong Law of Large Numbers

□ Probability space $(\Omega, \mathcal{A}, P_{\Omega})$ where $\{Z_i\}_{i=1}^n$ are i.i.d. random variables (not necessarily taking value in \mathbb{R}).

Sketch of Proof: By the Strong Law of Large Numbers

- □ Probability space $(\Omega, \mathcal{A}, P_{\Omega})$ where $\{Z_i\}_{i=1}^n$ are i.i.d. random variables (not necessarily taking value in \mathbb{R}).
- $\label{eq:generalized_states} \Box \ (\Omega, \mathcal{A}, P_{\Omega}) \text{ push forward to } (\mathcal{Z}^{\infty}, \mathcal{F}^{\infty}, \{\mathcal{F}^n\}, P_{Z^{\infty}}).$

Sketch of Proof: By the Strong Law of Large Numbers

- □ Probability space $(\Omega, \mathcal{A}, P_{\Omega})$ where $\{Z_i\}_{i=1}^n$ are i.i.d. random variables (not necessarily taking value in \mathbb{R}).
- $\label{eq:general} \Box \ (\Omega, \mathcal{A}, P_{\Omega}) \text{ push forward to } (\mathcal{Z}^{\infty}, \mathcal{F}^{\infty}, \{\mathcal{F}^n\}, P_{Z^{\infty}}).$
- □ Overall space of interest: Push forward space product with $(\mathcal{W}, \mathcal{B}, P_W^\infty)$ gets $(\mathcal{W} \times \mathcal{Z}^\infty, \mathcal{B} \times \mathcal{F}^\infty, P_W^\infty \otimes P_{Z^\infty}).$

Sketch of Proof: By the Strong Law of Large Numbers

- □ Probability space $(\Omega, \mathcal{A}, P_{\Omega})$ where $\{Z_i\}_{i=1}^n$ are i.i.d. random variables (not necessarily taking value in \mathbb{R}).
- $\label{eq:general} \Box \ (\Omega, \mathcal{A}, P_{\Omega}) \text{ push forward to } (\mathcal{Z}^{\infty}, \mathcal{F}^{\infty}, \{\mathcal{F}^n\}, P_{Z^{\infty}}).$
- □ Overall space of interest: Push forward space product with $(\mathcal{W}, \mathcal{B}, P_W^\infty)$ gets $(\mathcal{W} \times \mathcal{Z}^\infty, \mathcal{B} \times \mathcal{F}^\infty, P_W^\infty \otimes P_{Z^\infty}).$
- □ Every distribution $P_{W,Z^n}^{[n]}$ defined by Gibbs algorithm (as a markov kernel) on $(W \times Z^{\infty}, \mathcal{B} \times \mathcal{F}^n)$, $P_{W,Z_i}^{[n]}$ as its marginalization.

Sketch of Proof: By the Strong Law of Large Numbers

- □ Probability space $(\Omega, \mathcal{A}, P_{\Omega})$ where $\{Z_i\}_{i=1}^n$ are i.i.d. random variables (not necessarily taking value in \mathbb{R}).
- $\label{eq:generalized_states} \Box \ (\Omega, \mathcal{A}, P_{\Omega}) \text{ push forward to } (\mathcal{Z}^{\infty}, \mathcal{F}^{\infty}, \{\mathcal{F}^n\}, P_{Z^{\infty}}).$
- □ Overall space of interest: Push forward space product with $(\mathcal{W}, \mathcal{B}, P_W^\infty)$ gets $(\mathcal{W} \times \mathcal{Z}^\infty, \mathcal{B} \times \mathcal{F}^\infty, P_W^\infty \otimes P_{Z^\infty}).$
- □ Every distribution $P_{W,Z^n}^{[n]}$ defined by Gibbs algorithm (as a markov kernel) on $(W \times Z^{\infty}, \mathcal{B} \times \mathcal{F}^n)$, $P_{W,Z_i}^{[n]}$ as its marginalization.
- □ The Strong Law of Large Numbers indicates:

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\ell(W,Z_i)=L_\mu(W)\quad a.s.$$

w.r.t. $P_W^{\infty} \otimes P_{Z^{\infty}}$

Y. Zhu (HUST), Y. Bu (UF)

Asymptotic proof

By Fatou's lemma

$$\begin{split} \lim_{n \to \infty} \left(\frac{dP_{W,Z_i}^{[n]}}{dP_W^{\infty} \otimes P_{Z^{\infty}}} \right) &= \lim_{n \to \infty} \left(\int_{\mathbb{Z}^{n-1}} P_{W|Z_i,z^{-i}}^{[n]} d\mu^{n-1}(z^{-i}) \right) \cdot \frac{d\text{Leb}}{dP_W^{\infty}} \\ &\geq \left(\int_{\mathbb{Z}^{\infty}} \lim_{n \to \infty} P_{W|Z_i,z^{-i}}^{[n]} dP_{Z^{\infty}}(z^{\infty}) \right) \cdot \frac{d\text{Leb}}{dP_W^{\infty}} \\ &= 1 \quad \text{Strong Law of Large Numbers} \end{split}$$

Asymptotic proof

By Fatou's lemma

$$\lim_{n \to \infty} \left(\frac{dP_{W,Z_i}^{[n]}}{dP_W^{\infty} \otimes P_{Z^{\infty}}} \right) = \lim_{n \to \infty} \left(\int_{\mathbb{Z}^{n-1}} P_{W|Z_i,z^{-i}}^{[n]} d\mu^{n-1}(z^{-i}) \right) \cdot \frac{d\text{Leb}}{dP_W^{\infty}} \\
\geq \left(\int_{Z^{\infty}} \lim_{n \to \infty} P_{W|Z_i,z^{-i}}^{[n]} dP_{Z^{\infty}}(z^{\infty}) \right) \cdot \frac{d\text{Leb}}{dP_W^{\infty}} \\
= 1 \quad \text{Strong Law of Large Numbers}$$

□ Suppose $\Pr(\liminf_{n\to\infty} (dP_{W,Z_i}^{[n]}/dP_W^{\infty} \otimes P_{Z^{\infty}}) > 1) > 0$, again applying Fatou's lemma from another direction

$$1 = \lim_{n \to \infty} \int_{\mathcal{W} \times \mathcal{Z}^{\infty}} \left(\frac{dP_{W,Z_i}^{[n]}}{dP_W^{\infty} \otimes P_{Z^{\infty}}} \right) dP_W^{\infty} \otimes P_{Z^{\infty}}$$
$$\geq \int_{\mathcal{W} \times \mathcal{Z}^{\infty}} \lim_{n \to \infty} \left(\frac{dP_{W,Z_i}^{[n]}}{dP_W^{\infty} \otimes P_{Z^{\infty}}} \right) dP_W^{\infty} \otimes P_{Z^{\infty}} > 1 \quad \mathbf{X}$$

So $\Pr(\liminf_{n \to \infty} (dP^{[n]}_{W,Z_i}/dP^{\infty}_W \otimes P_{Z^{\infty}}) = 1) = 1$

Y. Zhu (HUST), Y. Bu (UF)

Bound by Stability

Condition: $\exp(-2\beta/n) < dA_s^\beta/dA_{s'}^\beta < \exp(2\beta/n)$ **Target:** Upper bound $D(A_s^\beta || A_{s'}^\beta)$ using Hoeffding's lemma.

Proof: From the definition,

$$D(A_{s}^{\beta} \| A_{s\prime}^{\beta}) = \mathbb{E}_{A_{s}^{\beta}} \bigg[\log \frac{\mathsf{d} A_{s}^{\beta}}{\mathsf{d} A_{s\prime}^{\beta}} \bigg] \leq \frac{2\beta}{n}$$

which is the suboptimal bound. Using Hoeffding's lemma, for any r.v. $X \in [a, b]$,

$$\mathbb{E}[e^X] \leq \exp\left(\mathbb{E}[X] + \frac{(b-a)^2}{8}\right)$$

Letting $X = -\log dA_s^\beta/dA_{s'}^\beta$, we get

$$egin{aligned} &1 \leq \exp\left(-D(\mathcal{A}^eta_{m{s}} \| \mathcal{A}^eta_{m{s\prime}}) + rac{(rac{4eta}{n})^2}{8}
ight) \ &\Rightarrow & D(\mathcal{A}^eta_{m{s}} \| \mathcal{A}^eta_{m{s\prime}}) \leq rac{2eta^2}{1746224} \end{aligned}$$

Y. Zhu (HUST), Y. Bu (UF)